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Abstract 

Ease of communication between payloads and their ground users is critical to the effectiveness of the International 
Space Station (ISS) Columbus module as a platform for commercial and ESA payloads. The Multi-Purpose 
Communications Computer (MPCC) has made IP-based communication between Columbus and the Columbus 
Control Center (Col-CC) possible through both the NASA Ku-IPS service and the Columbus Ka-band service 
communication channels. This paper introduces the Columbus Data Management Infrastructure (CDMI), a 
replacement for MPCC aiming to enhance existing capabilities of MPCC by introducing new features and improving 
system resilience on both the hardware and software level. 

 
CDMI comprises four single-board computers to be installed on board Columbus, along with a set of virtual 

machines hosted at Col-CC. The CDMI computers consist of CompactPCI COTS elements, which are an industrial 
standard providing robustness, scalability, hot swapping, versatility, and long lifecycle support. Their setup is 
particularly designed to deal with space-specific challenges of power limitations, cooling methods, and radiation 
susceptibility. They host CDMI’s flight services as a cluster of hypervisors based on the Proxmox Virtual Environment 
(PVE). The PVE cluster enables a modular and redundant setup by containerizing services and replicating storage 
between nodes. The core services of CDMI ensure the continued functionality previously provided by MPCC. The IP 
Communications Service abstracts from the underlying Ka- and Ku-band communication channels, while the File 
Exchange Service provides fast and resilient data transfer across both communication channels. In addition, each 
payload will have its own redundant storage area within the cluster. This storage area is integrated with a flight SFTP 
server and Nextcloud on the ground making data easily accessible. Moreover, the use of a hypervisor enables payload 
users to establish personal virtual machines within CDMI. This has the potential to streamline flight data processing 
and minimize the requirement for data downlinks. 

 
The design of the ground component follows the principle of distributing services across dedicated virtual machines 

with a general preference for COTS software whenever possible. Monitoring services include Zabbix and Yamcs, 
which provide operators and payload users individual insights into CDMI’s status. Operators can modify the system 
configuration using Ansible via the AnsibleForms web interface. Furthermore, Ansible is crucial for CDMI’s 
deployment process, whose infrastructure is entirely represented as code. This enables fast release cycles by including 
security testing in our DevSecOps process. CDMI’s services can be effortlessly updated and configured using Ansible 
both on the ground and in flight. 
Keywords: ISS, MPCC, CDMI, DevSecOps, Infrastructure-as-Code, Ku-IPS 
 
Acronyms/Abbreviations 
CDMI  Columbus Data Management 

Infrastructure 
CDMI-F CDMI Flight segment 
CDMI-G CDMI Ground segment 
CD  Continuous Deployment 
CFDP  CCSDS File Delivery Protocol 

CI  Continuous Integration 
COTS  Commercial Off-The-Shelf 
Col-CC  Columbus Control Center 
DaSS  Data Services Subsystem 
DevSecOps Development, Security, and 

Operations 
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EAC  European Astronaut Centre 
EDRS  European Data Relay Satellite 
ESA  European Space Agency 
FES  File Exchange Service 
ISS  International Space Station 
Ku-IPS  Ku-band Internet Protocol Service 
LM  Link Manager 
LXC  Linux Container 
MPCC  Multi-Purpose Communication 

Computer 
NASA National Aeronautics and Space 

Administration 
ORU  On-board Replaceable Unit 
PCDS  Power Conditioning and Distribution 

System 
PI  Principal Investigator 
PVE  Proxmox Virtual Environment 
SCAO  Starboard Cone Aft Overhead 
VM  Virtual Machine 
VPU  Virtual Processing Unit 
 
1. Introduction 

The International Space Station (ISS), established 
through international cooperation between various space 
agencies, is the biggest man-made laboratory flying in 
space. One part of it is the ESA Columbus module, which 
focuses on conducting experiments in the unique 
conditions of zero gravity [1, 2, 3, 4, 5]. Data generated 
by such experiments needs to be downlinked reliably and 
in a timely manner. In addition, experiment software and 
data collection regimes may change over time, thus 
requiring experimenters to update their setup from the 
ground. To meet those needs, a direct Ku-band Internet 
Protocol Service (Ku-IPS) link, provided and maintained 
by NASA, was introduced alongside a gateway for 
European experimenters called Multi-Purpose 
Communications Computer (MPCC) [6, 7]. Since 2015, 
MPCC provides a straightforward approach for European 
experimenters on the ground to interact with their 
payload deployed in the ESA Columbus module. On 
board, MPCC consists of the European IP 
Communication Laptop (EICL) and the Columbus 
Monitoring and Administration Unit (CMAU), while 
their counterparts on the ground are hosted by the 
Columbus Control Center (Col-CC) in 
Oberpfaffenhofen, Germany. MPCC supports up to ten 
connected payloads, each paired with a designated 
Principal Investigator (PI) user account. In addition to the 
Ku-IPS link, a Ka-band terminal on Columbus has been 
installed to provide a direct communication path between 
Col-CC and the Columbus module that operates 
independently of shared communication resources. 

Although MPCC has proven to be a helpful asset to 
ensure direct communication between PIs and their 
payload, the system may not be prepared for required 
future extensions. Internal predictions show that future 

payload development is geared increasingly towards IP-
based communication, rather than making use of legacy 
payload interfaces of the Columbus Data Management 
System (COL-DMS). In order to adapt to the increased 
load that the integration of future payloads may bring, it 
is advisable to place additional emphasis on the following 
factors: (1) Increasing reliability through redundant 
hardware and software; (2) Enabling extensibility with 
rapid software release cycles; (3) Improving 
maintainability by increasing the modularity of the 
system. 

To allow for future expansion of Columbus through 
additional payloads with increased data link and storage 
requirements and considering the above factors as 
primary drivers of the design, it was decided to replace 
MPCC with the Columbus Data Management 
Infrastructure (CDMI). 
 
1.1 The CDMI Concept 

CDMI is envisioned to provide a reliable and modular 
platform to integrate payloads into the Columbus module 
using modern virtualization technology, with a launch 
planned for the fall of 2025. CDMI’s flight component, 
CDMI-F, comprises four single-board computers, 
forming three redundant virtual processing units (VPU). 
Each VPU serves as a hypervisor, running the Proxmox 
Virtual Environment in a cluster configuration (see 
Section 2.2). 

From the hardware perspective, CDMI-F makes 
extensive use of CompactPCI COTS elements allowing 
it to benefit from modern industry standards and cost-
efficient redundant parts (see Section 2.3). The approach 
of using COTS hardware in space aligns with the latest 
trends in the industry, for example, Hewlett Packard 
Enterprise’s Spaceborne computer [8, 9]. CDMI-F is 
fully conduction cooled via coldplates, rejecting heat 
through the thermal control system in Columbus. CDMI-
F’s three VPUs are installed on top of the starboard cone 
aft overhead (SCAO) coldplate of the Columbus module 
and do not protrude into the cabin (see Figure 1).  

 
Figure 1: Planned hardware location of CDMI on the 
starboard side of the Columbus module. ©ESA, adapted with 
permission. 
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Additionally, replacement parts for COTS hardware 
will be shipped with CDMI to mitigate potential radiation 
damage. 

In terms of software, CDMI follows a similar 
approach, whereby software processes are 
conceptualized as independent modular services and are 
realized through COTS software whenever possible. 
Through its hypervisor architecture, CDMI-F can realize 
both legacy MPCC functionality and new software 
components as isolated containerized services (see 
Section 3). Functions of CDMI will include enabling of 
payload communications, file transfers, and file storage, 
but also monitoring of Columbus hardware and 
provisioning of standard network services (e.g., NTP and 
DNS). CDMI’s ground component, CDMI-G, is 
distributed across multiple Virtual Machines (VMs) 
hosted at Col-CC. CDMI-G contains services to monitor 
and control CDMI as well as the ground counterparts to 
CDMI-F’s services. Ground services can be accessed 
through web portals that offer custom interfaces for 
operators and PIs.  

 The design of CDMI seeks to adhere to DevSecOps 
principles with the objective of facilitating the 
implementation of robust and fast software release 
cycles. To this end, automated testing and validation are 
conducted using identical setups on Earth, encompassing 
both digital and physical environments. Continuous 
integration and deployment (CI/CD) ensures continuous 
improvement and rapid prototyping to address new 
challenges. The infrastructure is configurable, allowing 
rapid adaptation of both software and hardware. CDMI is 
designed around ‘file-based operations’, meaning that all 
configuration changes and therefore all control of the 
behavior and state of CDMI is achieved through changes 
in configuration files. Ultimately the goal of our 
approach is to operate CDMI like a terrestrial IT system, 
using contemporary monitoring and configuration tools. 

Section 3 explains the CDMI services and its 
virtualization infrastructure including the underlying 
DevSecOps concept in more detail. Section 4 highlights 
preliminary results achieved with CDMI’s development 
prototype. The final two sections discuss and summarize 
the impact of CDMI on operators and PIs. 

 
2. Material and Methods  

The following section provides an overview of the 
most important open-source COTS software components 
used in CDMI and the hardware setup of CDMI-F. 
Additionally, it explains the unique nature of the two 
space-to-ground channels available to CDMI. 

 
 

 
1 https://www.ansible.com/ 
2 https://ansibleforms.com/ 

2.1 Monitoring and Configuration Software 
CDMI configures its services through Ansible, 

monitors its services and hardware through Zabbix, and 
offers payload monitoring through Yamcs. 

 
2.1.1 Ansible 

Ansible 1  is an automation tool that facilitates 
configuration management, application deployment, and 
task automation across large-scale IT environments. Its 
main building block is the playbook, which declaratively 
defines desired system states and processes that are to be 
applied on a set of target hosts. Ansible operates without 
an agent, requiring no additional software on target hosts, 
which enhances security and simplifies setup. 
Communication with managed hosts is typically 
achieved over SSH, enabling seamless integration with 
diverse systems. Its idempotent design ensures repeated 
executions yield consistent results, minimizing the risk of 
unintended changes. Thus, Ansible is well suited to 
streamline CI/CD pipelines, fostering efficient and 
reliable system management and software delivery. 

Playbooks are written in the YAML  format; the 
backend of Ansible is implemented in Python. Its 
modular architecture supports extensibility, allowing 
users to create custom modules and plugins to meet 
specific needs. Ansible’s ecosystem includes Ansible 
Galaxy, a platform for code exchange, further promoting 
collaboration and reuse within the community. 

Ansible playbooks are typically executed via the 
command-line interface, while their parameters are 
defined through a set of YAML configuration files. The 
open-source project AnsibleForms 2  provides a web 
interface for playbook execution. Its form-based 
approach simplifies the process for users not familiar 
with the intricacies of Ansible syntax, as it eliminates the 
need to edit playbooks. Through AnsibleForms, it 
becomes possible to use Ansible for the deployment and 
run-time configuration of CDMI. 

 
2.1.2 Zabbix 

Zabbix3 monitors the performance and availability of 
IT infrastructure, networks, and applications. It offers 
comprehensive monitoring capabilities, including real-
time data collection, alerting, and graphing, making it 
suitable for complex environments. Zabbix supports 
multiple data collection methods, either via the Zabbix 
agent, or without an agent through, e.g., HTTP, SNMP or 
SSH. This enables Zabbix to centralize monitoring in 
diverse systems comprising a wide range of platforms 
and devices. Zabbix proxies may act as intermediate data 
collectors in remote parts of the IT infrastructure, thus 
adding resilience to the monitoring architecture. 

3 https://www.zabbix.com/ 
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One of Zabbix’s key strengths is its highly 
configurable nature, allowing users to tailor the 
monitoring setup to their specific needs through custom 
scripts, templates, and user-defined parameters. Its web 
interfaces provide various visualization tools, including 
historical data analysis, customizable dashboards, and 
custom web pages. Monitored data can also be made 
accessible for further processing through the Zabbix API. 
 
2.1.3 Yamcs 

Yamcs [10] is a scalable framework for mission 
control created by Space Applications Services that 
allows commanding and monitoring of flight space 
missions such as satellites, spacecrafts, and payloads, and 
their related ground equipment and stations. Yamcs has 
already been successfully applied in MPCC payload 
missions [1]. The base software supports a variety of 
features including gathering telemetry, sending 
telecommands, creating alarms with custom triggers, data 
archiving, mission replaying, and file transfers. It is also 
equipped with an easy-to-use web interface, allowing 
operators to monitor and control their mission as they see 
fit. Yamcs also comes with the possibility of creating 
custom UI displays to showcase parameters and controls 
visually to provide an intuitive interface. 

Its strength lies in its full customizability, both in 
configuration and in flexible plugin support. Based on 
Java, Yamcs can be configured to make use of external 
classes to further extend its capabilities for tailored 
needs, for example, custom data links, processors, and 
file transfers. 
 
2.2 Flight Software Foundation 

CDMI ensures the robustness of its modular flight 
infrastructure through the Proxmox Virtual Environment 
and the ZFS filesystem. 

 
2.2.1 Proxmox 

Proxmox Virtual Environment (PVE) 4 is an open-
source platform based on Debian that has been designed 
for efficient and scalable management of virtualized 
infrastructures. It offers a comprehensive solution for the 
deployment and management of virtual machines and 
containers, integrating two virtualization methods, KVM 
(Kernel-based Virtual Machine) and LXC (Linux 
Containers). The former provides full virtualization with 
complete hardware abstraction, while the latter offers 
lightweight, container-based virtualization, which shares 
the host system’s kernel, resulting in lower overhead and 
better performance. 

Notably, PVE supports high availability clustering, 
enabling continuous operation of services in the event of 
hardware failures, as well as features such as live 

 
4 https://www.proxmox.com/en/proxmox-virtual-

environment/ 

migration and integrated backup mechanisms. 
Additionally, it offers a wide range of robust storage 
solutions ranging from software-based RAID to shared 
network storage.  

A virtualization platform, like Proxmox, allows 
multiple virtual hardware instances to run on a single 
physical hardware platform. Virtualization enables more 
effective resource management by allocating the 
necessary resources in a dynamic manner resulting in 
reduced operational costs and enhanced flexibility. 
Furthermore, as a scalable system, PVE can adapt to 
changing computation, storage or networking 
requirements both in the short and long term. Managing 
computation resources of services individually allows for 
the flexible reduction of required resources to a minimum 
in the face of unforeseen circumstances. Over time, the 
long-term benefits of virtualization include the capacity 
to cater to the different needs of a continuously changing 
user base. 

 
2.2.2 Software RAID – ZFS 

ZFS is a robust filesystem that uniquely integrates file 
system features with physical volume management, 
offering comprehensive data protection and efficiency. 
By binding multiple disks together in a software RAID, 
ZFS efficiently duplicates data, ensuring redundancy and 
resilience. Its RAID-Z technology allows systems to 
remain operational even if a disk fails. Additionally, it 
employs a self-healing scrubbing process, which detects 
and corrects data corruption caused by random bit flips, 
maintaining data integrity over time. 

The file system uses a copy-on-write mechanism, 
meaning that when data is modified, ZFS writes the new 
data to a new location rather than overwriting the existing 
data. Only after the write is successful, ZFS updates the 
metadata to point to the new data block. This approach 
ensures that data is never left in an inconsistent state, 
even in the event of a system crash or power failure 
during the write process. Copy-on-write has the added 
benefit of allowing incremental snapshots to be created 
with minimal overhead - ideal for backups and 
versioning. However, these advanced features come with 
a trade-off: ZFS requires a significant amount of memory 
to perform optimally. 
 
2.3 CDMI Hardware 

The flight hardware system of CDMI is situated in the 
starboard cone of the Columbus module and is based on 
the CompactPCI Serial5 standard architecture. To allow 
easy on-orbit maintenance and upgrades, the flight 
hardware uses state-of-the-art COTS electronics 
components where possible. It comprises three virtual 

5 https://www.picmg.org/openstandards/compactpci/ 
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processing units (VPUs), containing four single-board 
computers in total. Each VPU also includes its own 
power conditioning and distribution system (PCDS) and 
is equipped with a commercial CPU comprising eight 2.6 
GHz cores and 64 GB of DDR4 error-correcting code 
(ECC) RAM. The VPUs host multiple smaller SSD 
drives, thereby providing redundant storage with 
relatively low power requirements. Each VPU is 
equipped with a dedicated switchboard, facilitating 
interconnections between the different VPUs and the 
Columbus network switches. These Ethernet 
switchboards operate autonomously from the CPU, thus 
ensuring redundant connectivity within the Columbus 
systems and payloads. Moreover, each VPU is furnished 
with Intel Active Management Technology (AMT) for 
remote administration and monitoring during system 
malfunctions. In non-nominal scenarios, it is possible to 
connect a portable monitor and keyboard for direct crew 
access. 

The properties of each VPU are identical to allow for 
easier manufacturing and interchangeability, and all 
active VPU components are on-board replaceable units 
(ORUs). This also allows for a possible future upgrade of 
ORUs with more performant components. There is no 
interdependence between VPUs on the hardware level, 
achieving a system that is at least single failure tolerant, 
while using the available resources to build the most 
flexible, extensible, and failure-tolerant system under the 
given constraints. 

Due to its location, the hardware is designed and 
configured to comply with rigorous power and thermal 
limitations. One of the main constraints is the available 
thermal budget and the need for a conduction-cooled 
solution. To this end, the CDMI hardware is cooled by an 
internal cold plate between two VPUs (in Figure 2, 
between VPU2 and VPU3). It also uses the SCAO cold 
plate, which is part of the starboard cross assembly in 
Columbus, to cool VPU1 (purple in Figure 2). 

 

Moreover, while the PCDS for each VPU can provide 
up to 300W power output, the boards are selected such 
that even under maximum power, the VPU cannot 
consume more than its allocated thermal budget. Given 
the restrictions of the operational environment, the design 
of the hardware also incorporates the use of custom-
developed components, including the internal cold plate, 
power harness, fluidic harness, and computer enclosures, 
which have been tailored to meet the specific power, 
thermal, and structural requirements. 
 
2.4 Space-to-Ground Link 

To enable communication between PIs on ground and 
their payloads in space, CDMI builds on top of the 
existing communications infrastructure used by 
Columbus, providing reliability and ease of use. 

Columbus systems communicate with ground via S-
band, Ku-band, and Ka-band frequencies on the radio 
spectrum. Data from the S-band and Ku-band antennas is 
routed via the Tracking and Data Relay Satellite System 
(TDRSS) network [11], down to the White Sands Ground 
Terminal, and through NASA infrastructure. Data sent 
via the Ka-band antenna (mounted externally on 
Columbus) is routed via the European Data Relay 
Satellite (EDRS) network [12], down to EDRS Ground 
stations, and through ESA infrastructure. On ground, 
ESA and NASA infrastructure relays data via the 
Interconnecting Ground Subnet (IGS). 

CDMI creates a layer of abstraction over this 
communications system: the IP Communications Service 
(IPCS), described in Section 3.1.2. The service routes 
data across any configured links, e.g. Ku and Ka, forming 
a gateway for bidirectional space-to-ground 
communication on flight and ground. Since the 
communication links are not only used by CDMI, but 
also by other Columbus and ISS components, the IPCS 
allows operators to configure bandwidth restrictions per 
link, which limit all CDMI communication between 
space and ground. Operators can also specify which link 
a payload can use.  

Through this abstraction provided by the IPCS, the 
space-to-ground link becomes transparent for payload 
users: a user only has to connect to the IP address of their 
payload, and CDMI handles the underlying mechanisms. 
This approach also provides a benefit to CDMI itself: any 
other internal component that needs to communicate 
between space and ground can be treated similarly to a 
payload and can have its traffic managed by and routed 
via the IPCS. 

 
3. Columbus Data Management Infrastructure 

This section focuses on CDMI’s hallmark properties: 
Its modular service infrastructure, its user interface for 
operators and PIs, and its DevSecOps concept. 

 
 

Figure 2: CDMI-F Hardware Components. ©Space 
Applications Services NV/SA, adapted with permission. 
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3.1 Service Infrastructure 
CDMI’s overall functionality is best described 

through its different services. They are distributed 
between CDMI-G and CDMI-F and are typically 
implemented in a single VM or LXC. An overview of the 
most important VMs and Containers and the related 
dataflow for PIs and operators can be seen in Figure 3. 

 
3.1.1 Identity Service 

User identity management is critical for CDMI 
because its functionality varies for different user groups. 
All users enter CDMI through its landing page, which 
acts as a gateway for all other CDMI web interfaces. 
When they reach the page, they are prompted to log into 
CDMI via its single sign-on service, implemented with 
Keycloak. Keycloak maps the user to a set of roles and 
permissions that shape all other aspects of CDMI. For 
example, the landing page will only show a selected 
number of services to a PI, whereas it will show all 
services to a CDMI administrator. Once logged in, the 
user can now visit services such as the Ground Data 
Service or the Payload Monitoring Service and be 
presented with their data immediately, without the need 
for further authentication. The Identity Service, 
consisting of the landing page and Keycloak, ensures that 
the underlying distributed system looks and feels like a 
single application. 

 
3.1.2 IP Communications Service 

Central to communication within CDMI, the IP 
Communications Service (IPCS) provides end-to-end 
connectivity between ground users and their payloads on 

 
6 https://strongswan.org/ 

the ISS, and for any CDMI services communicating 
between flight and ground. This communication is 
transparent to all IPCS clients: a ground user connects to 
their payload’s onboard IP address and the IPCS handles 
all routing and address translation. The service consists 
of two components: the firewalls, and the Link Manager 
(LM). 

The firewalls determine what traffic can enter CDMI, 
and potentially continue to the LM and into space. They 
allow fine-grained control over network communication 
permissions, e.g., which ground IP addresses are allowed 
to access which onboard IP addresses or networks. In this 
way, a ground user may access their files in the ground 
storage, without being able to reach any infrastructure in 
orbit. 

The LM monitors the space-to-ground links, 
establishes communication tunnels, and configures 
routes between ground and flight. It is split between two 
instances: one on the ground (LM-G), and one in flight 
on the Station (LM-F). LM-G periodically sends a ping 
across each configured link and waits for LM-F to 
respond. Depending on the latency of the ping responses, 
and how frequently they arrive, the LM determines that a 
link is up and can be used for communication (AOS 
status), or that it is down, and no communication is 
possible (LOS status). It also broadcasts this information 
on a local TCP stream that other services, such as the File 
Exchange Service, can use to determine a link’s status. If 
a link is up, the LM creates a tunnel on the link, which 
can be configured as either Foo Over UDP (FOU) [13] or 
IPSEC6. It then creates routes for access to clients in its 
configuration (both payloads and system clients), using 
the Netlink interface [14] to manipulate networking 
facilities in the Linux kernel7. A client can be set to use 

7 https://kernel.org/ 

Figure 3: High-level diagram of the CDMI Service Infrastructure 
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any of the configured links, which allows an operator to 
balance the communication load across all available 
links. Furthermore, since the LM uses the kernel’s 
network stack, a system client (e.g. FES) can 
automatically failover from a link that lost signal to a 
different link. 

 
3.1.3 File Exchange Service 

The File Exchange Service (FES) allows an arbitrary 
number of payloads to asynchronously transfer files by 
mirroring them bidirectionally between flight and 
ground, similar to MPCC’s Dropbox [6]. A user of a 
payload places the data they wish to transfer into a 
specific directory via the Flight or Ground Data Storage 
service, which the FES periodically scans. When the FES 
sees new files, it adds them to a queue of files to be 
transferred. When a transfer slot becomes free for a 
payload, the FES takes files from this queue and begins 
transferring them. As part of the configuration, a payload 
has a maximum number of current transfers defined. It 
can also have file prioritization enabled, which means the 
user of a given payload can place files in a high-priority 
directory; these files will begin transferring before any 
non-high-priority files of the payload. 

Internally, FES uses the CCSDS File Delivery 
Protocol (CFDP) [15] for data transfer. There are four 
main parts to the FES: the file store, the FES server, the 
CFDP daemon, and the FES transport. The file store 
abstracts operations on a part of the payloads’ storage 
filesystems, via primitives specified by CFDP [15], and 
is made available to users through the Flight Data and 
Ground Data Distribution services. The FES server 
connects the file store with the CFDP daemon, and 
reports telemetry (e.g., number of transfers, the latest 
complete transfer, file checksums). The FES transport 
handles sending data over the space-to-ground links: it is 
configured for both the Ka and Ku links on Columbus, 
with bandwidth limits set for each. It uses all configured 
links in parallel: it receives AOS/LOS status from the 
Link Manager and sends CFDP Protocol Data Units 
(PDUs) on whichever link is available, through the IP 
Communications Service. Finally, the CFDP daemon sits 
between the FES server and transport, managing file 
transfers as CFDP transactions. A file is added for 
transfer by sending a message to the daemon. The 
daemon then transfers the file in the form of CFDP PDUs 
via the FES transport, retransmitting parts of a file when 
necessary, and calculates and verifies a checksum over 
the file. As such, it enables reliable, correct, and complete 
file delivery. 
 
3.1.4 Storage Services 

CDMI provides storage space to its users on the 
ground and in flight, with different emphases in their 
implementation. The Ground Data Storage Service is 
designed to facilitate convenient and secure access to 

flight-related data on the ground. To this end, a 
Nextcloud instance is integrated with the FES and 
connected to the redundant storage share at Col-CC. 
Nextcloud users can conveniently manage data from their 
home workstations and share data with collaborators 
working with the same payload. CDMI’s Identity Service 
ensures that user permissions are correctly applied to all 
data stored on the ground. 

The primary objective of the Flight Data Storage 
Service is to ensure the integrity of stored data, providing 
a secure repository for experimental data. The integrity 
of the data is ensured through multiple layers of 
protection, including a software-based RAID on the 
individual cluster nodes and data replication across 
multiple nodes within the cluster. Each PVE node hosts 
a dedicated data storage LXC container, which provides 
an SFTP share accessible by payloads connected to 
CDMI. The data storage container mounts a RAID-Z2 
ZFS volume for each configured payload, thereby 
ensuring that the data is protected against the loss of two 
drives of the hosting PVE node. For particularly sensitive 
data, it is also possible to replicate the ZFS volume to 
other cluster nodes in fixed intervals, safeguarding it 
against the loss of an entire PVE node. The use of SFTP 
gives payloads a straightforward path to transfer data to 
the ZFS volume, where it is stored securely until it is 
either processed on-board or transferred to ground. To 
facilitate this transfer, each payload volume contains a 
separate storage section with the FES directory structure 
where files are picked up or moved to automatically by 
the FES. 
 
3.1.5 Monitoring Services 

CDMI’s monitoring services consist of Zabbix for 
self-monitoring and Yamcs for payload monitoring. The 
core of the Zabbix setup is a server hosted in a VM on the 
ground, complemented by a proxy running in an LXC 
deployed in-flight. Yamcs is also hosted in a VM on the 
ground and exchanges data with both Zabbix and the 
Data Services Subsystem (DaSS), Col-CC’s monitoring 
database. 

The in-flight proxy aggregates metrics from all other 
in-flight containers, the Proxmox cluster hosts, and the 
on-board switches. For hardware, this includes critical 
parameters such as temperature and voltage. 
Additionally, the Zabbix proxy conducts routine 
reachability assessments of payloads by performing 
regular ping operations. Data collected by the proxy is 
periodically transmitted to the server on ground, where it 
is stored in a dedicated database. 

On the ground, the Zabbix server monitors its 
neighbouring VMs but also extends its monitoring 
capabilities to custom parameters of various operational 
services, including the IP Communications, File 
Exchange, and Identity services. Thus, monitoring not 
only provides valuable insights into the health and 
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integrity of the system, but also detailed information on 
service utilization patterns, enabling informed decision-
making and resource management. 

Data collected by the Zabbix infrastructure is made 
accessible to operators via the Zabbix web GUI. The GUI 
is customizable in several ways: user-based 
customization, a native feature of Zabbix allowing 
operators to create custom dashboards, and global 
dynamic configuration, adapting selected parts of the 
Zabbix GUI to CDMI’s latest configuration. For 
example, whenever a payload is added to the system, the 
Configuration Service adds a custom page for that 
payload to the GUI, populating it with its respective 
collected metrics. 

By contrast, Yamcs aims to provide CDMI related 
metrics to PIs. This is achieved by making relevant 
Zabbix and DaSS parameters available using custom 
Yamcs data links. It is ensured that a payload’s metrics 
can only be accessed by their respective users. 
Furthermore, payload monitoring data can be viewed on 
custom displays as part of the Yamcs web UI or obtained 
by PI external interfaces through Yamcs data streams. 

Additionally, Yamcs is CDMI’s interface to the 
DaSS, therefore retaining compatibility with existing 
Col-CC ground monitoring tools. Yamcs retrieves a 
subset of Zabbix items and publishes them to the DaSS, 
to provide the required metrics to Col-CC. Vice versa, 
data available in the DaSS can reach CDMI services 
through Yamcs. 
 
3.1.6 Log Management Service 

The Log Management Service centralizes log files 
from CDMI hosts in the ground storage and preserves the 
files on the originating hosts for a configurable period. 
This allows easy retrieval and analysis of log messages 
by developers and operators on ground, while enabling 
accountability and traceability. Log collection is 
achieved using rsyslog8 servers on flight and ground with 
all other CDMI hosts acting as their clients. Each client 
forwards a copy of log messages to their nearest server, 
i.e., flight services to the flight server, and analogously 
for ground. Log files are rotated to new files based on file 
size and/or time limits using the logrotate9 utility. Old 
files are compressed and purged after a configurable 
number of rotations. 

The FES (see Section 3.1.3) transfers logs from flight 
to ground, thus centralizing them in the ground storage. 
Most log files are downlinked once they have been 
rotated, while a selection of critical files is transferred in 
real-time, with new log messages written to these files 
being downlinked as they occur. 

 
 

 
8 https://www.rsyslog.com/ 

3.1.7 Configuration Service 
CDMI is orchestrated and maintained through a 

comprehensive Ansible-based deployment and 
operations system, providing improved consistency, 
automation, and scalability. This Configuration Service 
serves as the backbone of CDMI, ensuring that all 
components are consistently deployed and managed 
through a unified configuration management approach. 
The system is driven by configuration files, meaning that 
changes to the infrastructure or services are achieved by 
making simple adjustments to these configurations, 
reducing complexity and the risk of error. 

The architecture consists of two Ansible controllers: 
one operating on the ground within a VM and another in-
flight housed within a container. The ground-based 
Ansible controller is tightly integrated with the 
AnsibleForms web service, providing an intuitive 
interface for operators to interact with the system. The in-
flight Ansible controller, while primarily triggered by its 
ground counterpart, possesses the capability to 
autonomously execute playbooks based on sent 
configuration files, ensuring continued operation and 
system management even in the event of LOS. 

A key feature of the ground Ansible controller is its 
ability to maintain an up-to-date local representation of 
the system configuration. This local state is not only 
critical for pre-populating forms on AnsibleForms for 
operators, but also facilitates the detection of 
discrepancies between the desired and actual state of the 
system when compared to monitoring data observed in 
Zabbix. 
 
3.1.8 Security Architecture 

The security architecture of CDMI follows a defence-
in-depth strategy. It is aligned with a risk management 
process and incorporates derived security controls. The 
security architecture is built on several key elements 
designed to ensure comprehensive protection across all 
systems: 

(1) Network security is achieved through strict 
network segmentation, consistent enforcement of 
firewall policies in both the ground and flight segments 
and the implementation of intrusion detection systems. 
(2) Identity and access management is provided by role-
based access controls and centralized single sign-on 
mechanisms utilizing state-of-the-art protocols. (3) Data 
security is guaranteed by safeguarding data both in transit 
and at rest, incorporating strict access control measures 
and secure communication protocols for data exchange 
within both flight and ground networks. (4) Endpoint 
security is ensured through integrating robust anti-
malware defences. 

The above-mentioned elements are supported by 
CDMI’s CI/CD approach enabling fast patching and 

9 https://github.com/logrotate/logrotate 
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update mechanisms. The infrastructure-as-code approach 
allows the maintenance of an automated Software Bill of 
Materials (SBOM). The SBOM enhances application and 
supply chain security, by enabling automated scanning 
for common vulnerabilities and exposures which is 
integrated into our patching policies. Finally, Software 
development security is automatically applied to both 
compiled and interpreted code, utilizing language-
specific static application security testing and linters to 
maintain software integrity. 

 
3.2 CDMI’s User Interfaces 

CDMI’s infrastructure is distributed across multiple 
VMs and LXCs, yet it is accessible to users via a unified 
web interface. This interface, composed of a landing page 
and a reverse proxy, streamlines interactions with the 
entire infrastructure (see Figure 4). 

 
3.2.1 Monitoring and Control 

 Operators control CDMI primarily through 
configuration changes. These changes are triggered by 
filling out the appropriate predefined form in 
AnsibleForms, ensuring ease of use while minimizing the 
risk of misconfiguration. For example, by filling out a 
single form, operators can dynamically register and 
unregister payloads from the system — a change that 
Ansible propagates throughout the entire infrastructure, 
including ground and flight machines. Operators can also 
configure CDMI’s ground and flight firewalls, which 
allows them to granularly control who can access which 
parts of the system. In addition, CDMI’s resources, such 
as storage and link bandwidth, can be dynamically 
configured for each payload, allowing tailored resource 
management based on individual requirements. For 
example, it is thus possible to temporarily increase a 

payload’s storage space or its downlink bandwidth in the 
event of a resource-intensive experiment. 

Monitoring through Zabbix further supports CDMI’s 
resource management by providing an overview of 
current resource usage and issuing alerts when pre-
defined limits are reached, ensuring efficient oversight. 
Overall, the administration of individual machines is kept 
to a minimum through CDMI’s Infrastructure-as-Code 
approach, promoting consistency and reducing the need 
for manual intervention. 

 
3.2.2 Using CDMI’s services 

PIs engage with CDMI through two discrete 
interfaces. The first interface is the landing page, which 
provides PIs access to Ground Storage via Nextcloud, 
Payload Monitoring through Yamcs, and comprehensive 
information on the overall status of CDMI. 

Nextcloud enables PIs to share data with their 
collaborators, although it mainly serves as a gateway for 
data upload and download by providing access to the FES 
storage area (see Section 3.1.3). In contrast, Yamcs 
provides comprehensive information regarding the status 
and health of their payload. Through this interface, PIs 
can monitor essential data related to their payload, 
including real-time health metrics and current 
configuration within CDMI (e.g. bandwidth allocation, 
pending file transfers, and storage quota usage). 

Additionally, Yamcs notifies PIs of the availability of 
the secondary interface, namely direct IP 
communications via the IP Communications Service 
(IPCS). Once an operator has granted access by enabling 
the IPCS with a specified bandwidth, PIs are able to 
establish a secure connection to their payload through a 
VPN tunnel. From their payload, PIs may interact 
directly with selected portions of the CDMI flight 

Figure 4: Screenshot of the CDMI landing page 
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infrastructure, such as accessing the flight data storage 
via SFTP. 

 
3.3 CDMI’s DevSecOps Concept 

Fast software release cycles are highly desirable for 
CDMI, as it provides services to multiple independent 
PIs. One driver for fast release cycles is the adoption of 
new experiments or changes to existing ones, which 
require changes in the underlying service infrastructure. 
Another driver is the necessity for flexible adaptation of 
CDMI to future changes of software technologies or 
additional hardware becoming available on board. 

Prerequisites for fast release cycles are lightweight 
verification processes reducing the overhead traditionally 
observed in the aerospace industry, as well as a suitable 
automated toolchain.  

Two main pillars of the toolchain in CDMI are GitLab 
CI for building reliable CI/CD pipelines, and Ansible for 
complete automation of service deployment and 
configuration (see Section 2.1.1). Together with 
automated infrastructure provisioning these tools allow 
for quick and reproducible bootstrapping and deployment 
of complete CDMI environments comprised of all 
required flight nodes (CDMI-F) and ground nodes 
(CDMI-G). 

The CI/CD pipelines automatically produce new 
CDMI versions by applying the following steps: (1) Code 
quality checks and static code analysis (linting) on source 
code and configuration templates; (2) Building of custom 
software components; (3) Unit testing of source code and 
configuration templates; (4) Deployment to a digital twin 
by applying Terraform and Ansible configurations; (5) 
Running integration and system tests on the digital twin. 

Since this procedure takes a few hours only, it is used 
to provide fresh up-to-date environments to developers 
and testers every night, allowing for quick identification 
of integration issues. 

To a degree, the deployment in step 4 and the testing 
in step 5 can be further shortened to do a reconfiguration 
and shallow testing on an existing environment only, 
making it also suitable for producing intermediate 
versions during ongoing development. 

 
3.3.1 Configuration is running the show 

CDMI’s custom Ansible configuration files describe 
its entire infrastructure in code form comprising all 
services and their location within the system. Separate 
configuration files describe different aspects of CDMI, 
e.g. its VMs/LXCs, networks, service definitions, and 
storage configurations. Configurations are based on 
YAML schemas and may reference each other. This 
allows a simple representation of basic configuration 

parameters like hostnames, IP addresses, and ports, but 
also enables the dynamic representation of emergent 
parameters that require a combination of multiple pieces 
of information. 

Since configuration changes are rolled out via 
Ansible only, any change to the host definitions, network 
structure, or service configuration, will automatically be 
reflected in dependent services including the monitoring 
systems, thus significantly reducing maintenance effort. 

 
3.3.2 Environment twins 

Multiple environments can be set up sharing the same 
basic configuration or at least the same structure, 
allowing for instantiating digital or physical twins of the 
operational environment. 

Five environment classes are defined for CDMI. The 
Isolated Software Development environments are digital 
twins, i.e., isolated environments situated in ESA’s 
private cloud infrastructure, used for development and 
automated testing. The Software Development 
environments combine development hardware located at 
the European Astronaut Centre (EAC) with digital twins 
of CDMI-G in the ESA cloud to produce (nearly) 
identical physical twins of the operational CDMI-F 
segment planned to run in the Columbus module. The 
Software Test environment utilizes a CDMI-G segment 
deployed in the Col-CC infrastructure with development 
hardware at EAC resembling CDMI-F. A similar high-
fidelity hardware setup will act as the System Reference 
Facility used for training and integrated testing. Finally, 
there will be the Payload Reference Facility (PRF) 
environment, which represents a digital twin of CDMI 
that will be made available to payload developers. With 
the PRF it is possible to test a payload’s integration into 
CDMI through remote network access. 

In the development phase, these environments are 
used for demonstrating new features, enabling fast 
feedback from Col-CC operators. In preparation of 
delivery, manual and automatic validation and 
verification can be dry run on a physical twin to produce 
realistic test results, thus decreasing the number of 
iterations necessary to make a testing campaign 
successful. 
 
4. CDMI Concept Verification  

As CDMI is still under active development, there are 
no operational results available at this stage. However, 
preliminary tests have been conducted within the isolated 
development environment and the test environment to 
verify the feasibility of CDMI’s core concepts. 

These environments were demonstrated to future 
operators, showcasing a live user interface of CDMI. The 
demonstration focussed on a critical procedure: the 
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addition of a payload to the infrastructure. This procedure 
was selected because it historically required significant 
effort and touches nearly every service within CDMI. 

Triggered by a straightforward Ansible Form, a single 
Ansible playbook successfully configured the entire 
system to accommodate a new payload. Once configured, 
the newly added payload was able to utilize a simulated 
space-to-ground link, enabling remote login and file 
transfer operations (see Figure 5). 

 
Figure 5: Example screenshot of the AnsibleForms Web UI. 
The IP-Comms for Payload Simulator 1 (pl-sim1) is configured. 
AnsibleForms ensures that input is in the correct format. 

Importantly, the file transfer process demonstrated 
robust performance, even under adverse conditions. In 
the simulation, one of the two utilized space-to-ground 
channels was deliberately removed, yet the system 
continued to perform the file transfer without interruption, 
showcasing CDMI’s resilience in handling potential loss 
of signal. Figure 6 shows the measured bits per second 
sent by the FES through the space-to-ground link during 
two file transfers. 

 
Figure 6: Ka and Ku link usage of the FES during two file 
transfers. 

Starting at the two-minute mark, a first file was 
transferred entirely through the simulated Ka link 
without interruption. A second file was sent at the six-
minute mark, but the simulated Ka link was removed 
during transfer. The FES autonomously changed to the 
Ku link and finished the remaining transfer. 

These results, while preliminary, confirm the 
feasibility of CDMI’s approach and provide a solid 
foundation for further development. 

 
5. Discussion  

This work presents CDMI, an advanced infrastructure 
of virtualized environments that integrates a suite of 
services distributed across both ground and flight 
segments. The preliminary results indicate that CDMI 
successfully combines an intuitive and user-friendly 
interface with robust, reliable functionality. 

CDMI retains the core capabilities of its predecessor, 
MPCC, particularly in enabling PIs to remotely connect 
to their payloads and efficiently downlink data. 
Moreover, CDMI puts additional emphasis on reliability 
through redundancy, extensibility through rapid software 
release cycles, and maintainability through modular 
service components. 

A key feature of CDMI is its foundation on 
hypervisor technology, which opens a range of 
possibilities for future development. This design not only 
enhances its current capabilities but also allows for the 
seamless integration of new services and even custom 
virtual machines tailored to the specific needs of PIs. 
Moreover, implementing a DevSecOps approach within 
CDMI further strengthens its extensibility, enabling rapid 
development, testing, and deployment of future 
extensions. This approach ensures that new features and 
services can be added efficiently and reliably, 
maintaining the system’s robustness while continuously 
evolving to meet emerging requirements. 
 
5.1 Improving Operations 

The new CDMI user interface is expected to reduce 
operator intervention and chance for human error in 
comparison to the procedures currently in use. On the one 
hand, the utilization of AnsibleForms offers a user-
friendly interface with input sanitization. Conversely, the 
integration of Ansible as a single platform that interacts 
with numerous services should diminish the necessity for 
operator intervention. 

Furthermore, CDMI’s open configuration concept 
facilitates planning at an incremental level allowing 
operators to easily implement short-term planning 
changes without the need for extensive reconfiguration. 
This, along with the straightforward patching process 
facilitated by Git, should minimize planned downtime by 
speeding up maintenance. With smaller downtime, 
patches are expected to be applied more quickly as there 
is less impact on ongoing science, thus simplifying 
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scheduling. The goal is to make rolling out patches, 
particularly security-related ones, as fast and painless as 
possible. For example, adding or removing a payload 
from CDMI, a task which can require several 
configuration changes to the existing system, will be 
realizable through the execution of a single playbook. 
The integration of new payloads into the configuration of 
CDMI’s services is expected to occur seamlessly, with 
no anticipated downtime. 

As CDMI will feature a far greater number of hosts 
compared to MPCC and has the scope to increase in 
complexity, human error could become a bigger factor if 
not mitigated by strong controls within the system. The 
big advantage of Ansible for the CDMI operator is that it 
provides a management platform for the execution of 
playbooks. Rather than executing numerous commands 
touching multiple hosts, the operator relies on Ansible to 
appropriately configure the entire system and must only 
review the job output and analyse changes in telemetry. 
Although routine operator tasks can be automated 
without Ansible through simple scripting, the Ansible 
platform manages the execution of playbooks for the user 
in several ways. Ansible populates the playbook template 
for the user at execution time: the set of hosts to be 
managed is tracked in Ansible’s dynamic host inventory, 
particularly suitable in virtual and containerized 
environments. Ansible also provides easily digestible 
information to the operator about the outcome of each 
task on each host. In cases where a routine task fails a 
large part of the diagnostic analysis is already done for 
the operator by Ansible. Additionally, AnsibleForms 
offers the functionality to schedule playbook runs for 
future execution, thus allowing operators to manage their 
time more efficiently and reducing the concentration of 
tasks during high-pressure periods. The traditional 
monitoring and control system in use at Col-CC handles 
commands atomically, so that even though automated 
routines can be created, the routines are static and cannot 
customize themselves to the running environment. 

 
5.2 Improving Reliability 

Operators and PIs alike will benefit from CDMI’s 
enhanced reliability features at both the hardware and 
service levels. For example, in terms of file downlink, 
CDMI’s File Exchange Service provides improved data 
integrity. It uses CFDP’s native checksum functionality, 
where checksums are created and verified for each file 
transfer. For payloads requiring the highest levels of data 
integrity, MPCC relied on manual checks and user 
intervention, which resulted in a high administrative 
burden. Since checksum verification is now a part of the 
transfer process, it can allow automated mitigation, such 
as re-transferring a corrupted file. 

With its three VPUs, CDMI implements redundancy 
at multiple levels, improving the achievement of mission 
objectives. The CDMI VPUs use different power 

sources, minimizing the risk of a complete CDMI power 
failure, which would not only affect payload 
communications and payload data storage, but also 
access to critical Columbus components such as the 
Columbus LAN Switches or the on-board terminal of the 
Columbus Ka-band service. In the event of a power 
failure affecting one or two VPUs, most operations can 
be resumed without crew intervention through standard 
ground reconfigurations achieved through VPU hot 
redundancy. These reconfigurations are largely 
transparent to the payload users, ensuring uninterrupted 
payload communications. 

The Intel AMT allows a powered VPU to be booted 
remotely, even if the operating system is not running, to 
facilitate troubleshooting or power-down operations. The 
different VPUs will have redundant connections not only 
within the CDMI and the Columbus network, but also to 
the NASA data interfaces, making CDMI robust against 
failure or power loss of devices in its communication 
chain, and improving the availability of equipment that 
depends on CDMI. The CDMI software can 
automatically adapt to losses within the VPU 
configuration and transfer active services to other VPUs, 
making CDMI a more reliable data management system. 
With the improved redundancy and more robust 
hardware and software design, crew interaction with 
CDMI is expected to be reduced to a minimum of non-
nominal cases. The most likely case of crew intervention 
will be to replace an SSD that has been damaged by 
prolonged exposure to radiation. The use of ZFS RAID 
software, and the spare parts supplied with CDMI, should 
allow a seamless replacement procedure. 
 
5.3 Improving Extensibility 

One of the most compelling aspects of CDMI’s 
architecture is its extensibility, largely enabled by the 
underlying hypervisor technology. CDMI has been 
provisioned with significantly more computing resources 
than are currently required, providing ample capacity for 
future expansion. This foresight allows CDMI to evolve 
beyond its initial capabilities in two primary ways: by 
adding more flight services and by enabling PIs to host 
their own private VMs on the platform, effectively 
transforming CDMI into a "cloud above the sky". 

Future services that could be offered by CDMI are, 
for example, dedicated compression services for images 
or video data, reducing the need for extensive file 
downlinks by optimizing data before transmission. 
Another potential service could be a flight package 
mirror, which would facilitate fast and secure software 
updates for devices connected to CDMI. 

Furthermore, the ability for PIs to deploy private VMs 
within CDMI could have significant long-term 
implications for payload development. By offloading 
resource-intensive tasks to these virtualized 
environments, future payloads may be designed with 
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fewer onboard computational resources, reducing both 
complexity and cost. This capability not only enhances 
the flexibility and utility of CDMI but also promotes a 
more efficient use of resources in space missions. 
 
6. Conclusion 

CDMI demonstrates how modern principles and 
paradigms from Earth-based server architecture can be 
effectively applied to space infrastructure. By adhering to 
the concept of using COTS software and hardware 
whenever possible, CDMI reduces both development and 
maintenance costs. The adoption of a DevSecOps 
approach ensures fast release cycles, enabling the 
incorporation of short-term feedback from its user base. 
CDMI’s modernized operator interfaces can be 
continuously extended to cater to future extensions of the 
system. Especially as CDMI’s hypervisor-based setup 
facilitates long-term extensibility, allowing the platform 
to evolve and expand its capabilities over time. 

As CDMI looks forward to its planned launch in 
2025, it aims to positively influence the design of future 
space systems. Further lessons learned from the 
operational phase are anticipated, which will continue to 
refine and enhance the framework. 
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