
75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 1 of 14

IAC-24,B3,7,2,x89114

The Columbus Data Management Infrastructure (CDMI): A cloud
above the sky on the ISS

Jan Tekülvea*, Alexander Balgavýb, Christian Altenschmidta, Catriona Bruced, Markus Daugsa, Jens

Endera, Christine Gläßerc, Nora Newied, Nicole Roshardte, Loric Vandentempelb

a CGI Deutschland B.V. & Co. KG., 44803 Bochum, Germany, jan.tekuelve@cgi.com,

christian.altenschmidt@cgi.com, markus.daugs@cgi.com, jens.ender@cgi.com
b Space Applications Services NV/SA, 1932 Sint-Stevens-Woluwe (Brussels Area), Belgium,

alexander.balgavy@spaceapplications.com, loric.vandentempel@spaceapplications.com
c CGI Deutschland B.V. & Co. KG., 64295 Darmstadt, Germany, christine.glaesser@cgi.com
d GMV GmbH, 82205 Gilching, Germany, catriona.bruce@gmv.com, nnewie@gmv.com
e European Space Agency (ESA) ESTEC, 2201 AZ Noordwijk, Netherlands, nicole.roshardt@esa.int
* Corresponding Author

Abstract

Ease of communication between payloads and their ground users is critical to the effectiveness of the International
Space Station (ISS) Columbus module as a platform for commercial and ESA payloads. The Multi-Purpose
Communications Computer (MPCC) has made IP-based communication between Columbus and the Columbus
Control Center (Col-CC) possible through both the NASA Ku-IPS service and the Columbus Ka-band service
communication channels. This paper introduces the Columbus Data Management Infrastructure (CDMI), a
replacement for MPCC aiming to enhance existing capabilities of MPCC by introducing new features and improving
system resilience on both the hardware and software level.

CDMI comprises four single-board computers to be installed on board Columbus, along with a set of virtual

machines hosted at Col-CC. The CDMI computers consist of CompactPCI COTS elements, which are an industrial
standard providing robustness, scalability, hot swapping, versatility, and long lifecycle support. Their setup is
particularly designed to deal with space-specific challenges of power limitations, cooling methods, and radiation
susceptibility. They host CDMI’s flight services as a cluster of hypervisors based on the Proxmox Virtual Environment
(PVE). The PVE cluster enables a modular and redundant setup by containerizing services and replicating storage
between nodes. The core services of CDMI ensure the continued functionality previously provided by MPCC. The IP
Communications Service abstracts from the underlying Ka- and Ku-band communication channels, while the File
Exchange Service provides fast and resilient data transfer across both communication channels. In addition, each
payload will have its own redundant storage area within the cluster. This storage area is integrated with a flight SFTP
server and Nextcloud on the ground making data easily accessible. Moreover, the use of a hypervisor enables payload
users to establish personal virtual machines within CDMI. This has the potential to streamline flight data processing
and minimize the requirement for data downlinks.

The design of the ground component follows the principle of distributing services across dedicated virtual machines

with a general preference for COTS software whenever possible. Monitoring services include Zabbix and Yamcs,
which provide operators and payload users individual insights into CDMI’s status. Operators can modify the system
configuration using Ansible via the AnsibleForms web interface. Furthermore, Ansible is crucial for CDMI’s
deployment process, whose infrastructure is entirely represented as code. This enables fast release cycles by including
security testing in our DevSecOps process. CDMI’s services can be effortlessly updated and configured using Ansible
both on the ground and in flight.
Keywords: ISS, MPCC, CDMI, DevSecOps, Infrastructure-as-Code, Ku-IPS

Acronyms/Abbreviations
CDMI Columbus Data Management

Infrastructure
CDMI-F CDMI Flight segment
CDMI-G CDMI Ground segment
CD Continuous Deployment
CFDP CCSDS File Delivery Protocol

CI Continuous Integration
COTS Commercial Off-The-Shelf
Col-CC Columbus Control Center
DaSS Data Services Subsystem
DevSecOps Development, Security, and

Operations

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 2 of 14

EAC European Astronaut Centre
EDRS European Data Relay Satellite
ESA European Space Agency
FES File Exchange Service
ISS International Space Station
Ku-IPS Ku-band Internet Protocol Service
LM Link Manager
LXC Linux Container
MPCC Multi-Purpose Communication

Computer
NASA National Aeronautics and Space

Administration
ORU On-board Replaceable Unit
PCDS Power Conditioning and Distribution

System
PI Principal Investigator
PVE Proxmox Virtual Environment
SCAO Starboard Cone Aft Overhead
VM Virtual Machine
VPU Virtual Processing Unit

1. Introduction

The International Space Station (ISS), established
through international cooperation between various space
agencies, is the biggest man-made laboratory flying in
space. One part of it is the ESA Columbus module, which
focuses on conducting experiments in the unique
conditions of zero gravity [1, 2, 3, 4, 5]. Data generated
by such experiments needs to be downlinked reliably and
in a timely manner. In addition, experiment software and
data collection regimes may change over time, thus
requiring experimenters to update their setup from the
ground. To meet those needs, a direct Ku-band Internet
Protocol Service (Ku-IPS) link, provided and maintained
by NASA, was introduced alongside a gateway for
European experimenters called Multi-Purpose
Communications Computer (MPCC) [6, 7]. Since 2015,
MPCC provides a straightforward approach for European
experimenters on the ground to interact with their
payload deployed in the ESA Columbus module. On
board, MPCC consists of the European IP
Communication Laptop (EICL) and the Columbus
Monitoring and Administration Unit (CMAU), while
their counterparts on the ground are hosted by the
Columbus Control Center (Col-CC) in
Oberpfaffenhofen, Germany. MPCC supports up to ten
connected payloads, each paired with a designated
Principal Investigator (PI) user account. In addition to the
Ku-IPS link, a Ka-band terminal on Columbus has been
installed to provide a direct communication path between
Col-CC and the Columbus module that operates
independently of shared communication resources.

Although MPCC has proven to be a helpful asset to
ensure direct communication between PIs and their
payload, the system may not be prepared for required
future extensions. Internal predictions show that future

payload development is geared increasingly towards IP-
based communication, rather than making use of legacy
payload interfaces of the Columbus Data Management
System (COL-DMS). In order to adapt to the increased
load that the integration of future payloads may bring, it
is advisable to place additional emphasis on the following
factors: (1) Increasing reliability through redundant
hardware and software; (2) Enabling extensibility with
rapid software release cycles; (3) Improving
maintainability by increasing the modularity of the
system.

To allow for future expansion of Columbus through
additional payloads with increased data link and storage
requirements and considering the above factors as
primary drivers of the design, it was decided to replace
MPCC with the Columbus Data Management
Infrastructure (CDMI).

1.1 The CDMI Concept

CDMI is envisioned to provide a reliable and modular
platform to integrate payloads into the Columbus module
using modern virtualization technology, with a launch
planned for the fall of 2025. CDMI’s flight component,
CDMI-F, comprises four single-board computers,
forming three redundant virtual processing units (VPU).
Each VPU serves as a hypervisor, running the Proxmox
Virtual Environment in a cluster configuration (see
Section 2.2).

From the hardware perspective, CDMI-F makes
extensive use of CompactPCI COTS elements allowing
it to benefit from modern industry standards and cost-
efficient redundant parts (see Section 2.3). The approach
of using COTS hardware in space aligns with the latest
trends in the industry, for example, Hewlett Packard
Enterprise’s Spaceborne computer [8, 9]. CDMI-F is
fully conduction cooled via coldplates, rejecting heat
through the thermal control system in Columbus. CDMI-
F’s three VPUs are installed on top of the starboard cone
aft overhead (SCAO) coldplate of the Columbus module
and do not protrude into the cabin (see Figure 1).

Figure 1: Planned hardware location of CDMI on the
starboard side of the Columbus module. ©ESA, adapted with
permission.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 3 of 14

Additionally, replacement parts for COTS hardware
will be shipped with CDMI to mitigate potential radiation
damage.

In terms of software, CDMI follows a similar
approach, whereby software processes are
conceptualized as independent modular services and are
realized through COTS software whenever possible.
Through its hypervisor architecture, CDMI-F can realize
both legacy MPCC functionality and new software
components as isolated containerized services (see
Section 3). Functions of CDMI will include enabling of
payload communications, file transfers, and file storage,
but also monitoring of Columbus hardware and
provisioning of standard network services (e.g., NTP and
DNS). CDMI’s ground component, CDMI-G, is
distributed across multiple Virtual Machines (VMs)
hosted at Col-CC. CDMI-G contains services to monitor
and control CDMI as well as the ground counterparts to
CDMI-F’s services. Ground services can be accessed
through web portals that offer custom interfaces for
operators and PIs.

 The design of CDMI seeks to adhere to DevSecOps
principles with the objective of facilitating the
implementation of robust and fast software release
cycles. To this end, automated testing and validation are
conducted using identical setups on Earth, encompassing
both digital and physical environments. Continuous
integration and deployment (CI/CD) ensures continuous
improvement and rapid prototyping to address new
challenges. The infrastructure is configurable, allowing
rapid adaptation of both software and hardware. CDMI is
designed around ‘file-based operations’, meaning that all
configuration changes and therefore all control of the
behavior and state of CDMI is achieved through changes
in configuration files. Ultimately the goal of our
approach is to operate CDMI like a terrestrial IT system,
using contemporary monitoring and configuration tools.

Section 3 explains the CDMI services and its
virtualization infrastructure including the underlying
DevSecOps concept in more detail. Section 4 highlights
preliminary results achieved with CDMI’s development
prototype. The final two sections discuss and summarize
the impact of CDMI on operators and PIs.

2. Material and Methods

The following section provides an overview of the
most important open-source COTS software components
used in CDMI and the hardware setup of CDMI-F.
Additionally, it explains the unique nature of the two
space-to-ground channels available to CDMI.

1 https://www.ansible.com/
2 https://ansibleforms.com/

2.1 Monitoring and Configuration Software
CDMI configures its services through Ansible,

monitors its services and hardware through Zabbix, and
offers payload monitoring through Yamcs.

2.1.1 Ansible

Ansible 1 is an automation tool that facilitates
configuration management, application deployment, and
task automation across large-scale IT environments. Its
main building block is the playbook, which declaratively
defines desired system states and processes that are to be
applied on a set of target hosts. Ansible operates without
an agent, requiring no additional software on target hosts,
which enhances security and simplifies setup.
Communication with managed hosts is typically
achieved over SSH, enabling seamless integration with
diverse systems. Its idempotent design ensures repeated
executions yield consistent results, minimizing the risk of
unintended changes. Thus, Ansible is well suited to
streamline CI/CD pipelines, fostering efficient and
reliable system management and software delivery.

Playbooks are written in the YAML format; the
backend of Ansible is implemented in Python. Its
modular architecture supports extensibility, allowing
users to create custom modules and plugins to meet
specific needs. Ansible’s ecosystem includes Ansible
Galaxy, a platform for code exchange, further promoting
collaboration and reuse within the community.

Ansible playbooks are typically executed via the
command-line interface, while their parameters are
defined through a set of YAML configuration files. The
open-source project AnsibleForms 2 provides a web
interface for playbook execution. Its form-based
approach simplifies the process for users not familiar
with the intricacies of Ansible syntax, as it eliminates the
need to edit playbooks. Through AnsibleForms, it
becomes possible to use Ansible for the deployment and
run-time configuration of CDMI.

2.1.2 Zabbix

Zabbix3 monitors the performance and availability of
IT infrastructure, networks, and applications. It offers
comprehensive monitoring capabilities, including real-
time data collection, alerting, and graphing, making it
suitable for complex environments. Zabbix supports
multiple data collection methods, either via the Zabbix
agent, or without an agent through, e.g., HTTP, SNMP or
SSH. This enables Zabbix to centralize monitoring in
diverse systems comprising a wide range of platforms
and devices. Zabbix proxies may act as intermediate data
collectors in remote parts of the IT infrastructure, thus
adding resilience to the monitoring architecture.

3 https://www.zabbix.com/

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 4 of 14

One of Zabbix’s key strengths is its highly
configurable nature, allowing users to tailor the
monitoring setup to their specific needs through custom
scripts, templates, and user-defined parameters. Its web
interfaces provide various visualization tools, including
historical data analysis, customizable dashboards, and
custom web pages. Monitored data can also be made
accessible for further processing through the Zabbix API.

2.1.3 Yamcs

Yamcs [10] is a scalable framework for mission
control created by Space Applications Services that
allows commanding and monitoring of flight space
missions such as satellites, spacecrafts, and payloads, and
their related ground equipment and stations. Yamcs has
already been successfully applied in MPCC payload
missions [1]. The base software supports a variety of
features including gathering telemetry, sending
telecommands, creating alarms with custom triggers, data
archiving, mission replaying, and file transfers. It is also
equipped with an easy-to-use web interface, allowing
operators to monitor and control their mission as they see
fit. Yamcs also comes with the possibility of creating
custom UI displays to showcase parameters and controls
visually to provide an intuitive interface.

Its strength lies in its full customizability, both in
configuration and in flexible plugin support. Based on
Java, Yamcs can be configured to make use of external
classes to further extend its capabilities for tailored
needs, for example, custom data links, processors, and
file transfers.

2.2 Flight Software Foundation

CDMI ensures the robustness of its modular flight
infrastructure through the Proxmox Virtual Environment
and the ZFS filesystem.

2.2.1 Proxmox

Proxmox Virtual Environment (PVE) 4 is an open-
source platform based on Debian that has been designed
for efficient and scalable management of virtualized
infrastructures. It offers a comprehensive solution for the
deployment and management of virtual machines and
containers, integrating two virtualization methods, KVM
(Kernel-based Virtual Machine) and LXC (Linux
Containers). The former provides full virtualization with
complete hardware abstraction, while the latter offers
lightweight, container-based virtualization, which shares
the host system’s kernel, resulting in lower overhead and
better performance.

Notably, PVE supports high availability clustering,
enabling continuous operation of services in the event of
hardware failures, as well as features such as live

4 https://www.proxmox.com/en/proxmox-virtual-

environment/

migration and integrated backup mechanisms.
Additionally, it offers a wide range of robust storage
solutions ranging from software-based RAID to shared
network storage.

A virtualization platform, like Proxmox, allows
multiple virtual hardware instances to run on a single
physical hardware platform. Virtualization enables more
effective resource management by allocating the
necessary resources in a dynamic manner resulting in
reduced operational costs and enhanced flexibility.
Furthermore, as a scalable system, PVE can adapt to
changing computation, storage or networking
requirements both in the short and long term. Managing
computation resources of services individually allows for
the flexible reduction of required resources to a minimum
in the face of unforeseen circumstances. Over time, the
long-term benefits of virtualization include the capacity
to cater to the different needs of a continuously changing
user base.

2.2.2 Software RAID – ZFS

ZFS is a robust filesystem that uniquely integrates file
system features with physical volume management,
offering comprehensive data protection and efficiency.
By binding multiple disks together in a software RAID,
ZFS efficiently duplicates data, ensuring redundancy and
resilience. Its RAID-Z technology allows systems to
remain operational even if a disk fails. Additionally, it
employs a self-healing scrubbing process, which detects
and corrects data corruption caused by random bit flips,
maintaining data integrity over time.

The file system uses a copy-on-write mechanism,
meaning that when data is modified, ZFS writes the new
data to a new location rather than overwriting the existing
data. Only after the write is successful, ZFS updates the
metadata to point to the new data block. This approach
ensures that data is never left in an inconsistent state,
even in the event of a system crash or power failure
during the write process. Copy-on-write has the added
benefit of allowing incremental snapshots to be created
with minimal overhead - ideal for backups and
versioning. However, these advanced features come with
a trade-off: ZFS requires a significant amount of memory
to perform optimally.

2.3 CDMI Hardware

The flight hardware system of CDMI is situated in the
starboard cone of the Columbus module and is based on
the CompactPCI Serial5 standard architecture. To allow
easy on-orbit maintenance and upgrades, the flight
hardware uses state-of-the-art COTS electronics
components where possible. It comprises three virtual

5 https://www.picmg.org/openstandards/compactpci/

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 5 of 14

processing units (VPUs), containing four single-board
computers in total. Each VPU also includes its own
power conditioning and distribution system (PCDS) and
is equipped with a commercial CPU comprising eight 2.6
GHz cores and 64 GB of DDR4 error-correcting code
(ECC) RAM. The VPUs host multiple smaller SSD
drives, thereby providing redundant storage with
relatively low power requirements. Each VPU is
equipped with a dedicated switchboard, facilitating
interconnections between the different VPUs and the
Columbus network switches. These Ethernet
switchboards operate autonomously from the CPU, thus
ensuring redundant connectivity within the Columbus
systems and payloads. Moreover, each VPU is furnished
with Intel Active Management Technology (AMT) for
remote administration and monitoring during system
malfunctions. In non-nominal scenarios, it is possible to
connect a portable monitor and keyboard for direct crew
access.

The properties of each VPU are identical to allow for
easier manufacturing and interchangeability, and all
active VPU components are on-board replaceable units
(ORUs). This also allows for a possible future upgrade of
ORUs with more performant components. There is no
interdependence between VPUs on the hardware level,
achieving a system that is at least single failure tolerant,
while using the available resources to build the most
flexible, extensible, and failure-tolerant system under the
given constraints.

Due to its location, the hardware is designed and
configured to comply with rigorous power and thermal
limitations. One of the main constraints is the available
thermal budget and the need for a conduction-cooled
solution. To this end, the CDMI hardware is cooled by an
internal cold plate between two VPUs (in Figure 2,
between VPU2 and VPU3). It also uses the SCAO cold
plate, which is part of the starboard cross assembly in
Columbus, to cool VPU1 (purple in Figure 2).

Moreover, while the PCDS for each VPU can provide
up to 300W power output, the boards are selected such
that even under maximum power, the VPU cannot
consume more than its allocated thermal budget. Given
the restrictions of the operational environment, the design
of the hardware also incorporates the use of custom-
developed components, including the internal cold plate,
power harness, fluidic harness, and computer enclosures,
which have been tailored to meet the specific power,
thermal, and structural requirements.

2.4 Space-to-Ground Link

To enable communication between PIs on ground and
their payloads in space, CDMI builds on top of the
existing communications infrastructure used by
Columbus, providing reliability and ease of use.

Columbus systems communicate with ground via S-
band, Ku-band, and Ka-band frequencies on the radio
spectrum. Data from the S-band and Ku-band antennas is
routed via the Tracking and Data Relay Satellite System
(TDRSS) network [11], down to the White Sands Ground
Terminal, and through NASA infrastructure. Data sent
via the Ka-band antenna (mounted externally on
Columbus) is routed via the European Data Relay
Satellite (EDRS) network [12], down to EDRS Ground
stations, and through ESA infrastructure. On ground,
ESA and NASA infrastructure relays data via the
Interconnecting Ground Subnet (IGS).

CDMI creates a layer of abstraction over this
communications system: the IP Communications Service
(IPCS), described in Section 3.1.2. The service routes
data across any configured links, e.g. Ku and Ka, forming
a gateway for bidirectional space-to-ground
communication on flight and ground. Since the
communication links are not only used by CDMI, but
also by other Columbus and ISS components, the IPCS
allows operators to configure bandwidth restrictions per
link, which limit all CDMI communication between
space and ground. Operators can also specify which link
a payload can use.

Through this abstraction provided by the IPCS, the
space-to-ground link becomes transparent for payload
users: a user only has to connect to the IP address of their
payload, and CDMI handles the underlying mechanisms.
This approach also provides a benefit to CDMI itself: any
other internal component that needs to communicate
between space and ground can be treated similarly to a
payload and can have its traffic managed by and routed
via the IPCS.

3. Columbus Data Management Infrastructure

This section focuses on CDMI’s hallmark properties:
Its modular service infrastructure, its user interface for
operators and PIs, and its DevSecOps concept.

Figure 2: CDMI-F Hardware Components. ©Space
Applications Services NV/SA, adapted with permission.

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 6 of 14

3.1 Service Infrastructure
CDMI’s overall functionality is best described

through its different services. They are distributed
between CDMI-G and CDMI-F and are typically
implemented in a single VM or LXC. An overview of the
most important VMs and Containers and the related
dataflow for PIs and operators can be seen in Figure 3.

3.1.1 Identity Service

User identity management is critical for CDMI
because its functionality varies for different user groups.
All users enter CDMI through its landing page, which
acts as a gateway for all other CDMI web interfaces.
When they reach the page, they are prompted to log into
CDMI via its single sign-on service, implemented with
Keycloak. Keycloak maps the user to a set of roles and
permissions that shape all other aspects of CDMI. For
example, the landing page will only show a selected
number of services to a PI, whereas it will show all
services to a CDMI administrator. Once logged in, the
user can now visit services such as the Ground Data
Service or the Payload Monitoring Service and be
presented with their data immediately, without the need
for further authentication. The Identity Service,
consisting of the landing page and Keycloak, ensures that
the underlying distributed system looks and feels like a
single application.

3.1.2 IP Communications Service

Central to communication within CDMI, the IP
Communications Service (IPCS) provides end-to-end
connectivity between ground users and their payloads on

6 https://strongswan.org/

the ISS, and for any CDMI services communicating
between flight and ground. This communication is
transparent to all IPCS clients: a ground user connects to
their payload’s onboard IP address and the IPCS handles
all routing and address translation. The service consists
of two components: the firewalls, and the Link Manager
(LM).

The firewalls determine what traffic can enter CDMI,
and potentially continue to the LM and into space. They
allow fine-grained control over network communication
permissions, e.g., which ground IP addresses are allowed
to access which onboard IP addresses or networks. In this
way, a ground user may access their files in the ground
storage, without being able to reach any infrastructure in
orbit.

The LM monitors the space-to-ground links,
establishes communication tunnels, and configures
routes between ground and flight. It is split between two
instances: one on the ground (LM-G), and one in flight
on the Station (LM-F). LM-G periodically sends a ping
across each configured link and waits for LM-F to
respond. Depending on the latency of the ping responses,
and how frequently they arrive, the LM determines that a
link is up and can be used for communication (AOS
status), or that it is down, and no communication is
possible (LOS status). It also broadcasts this information
on a local TCP stream that other services, such as the File
Exchange Service, can use to determine a link’s status. If
a link is up, the LM creates a tunnel on the link, which
can be configured as either Foo Over UDP (FOU) [13] or
IPSEC6. It then creates routes for access to clients in its
configuration (both payloads and system clients), using
the Netlink interface [14] to manipulate networking
facilities in the Linux kernel7. A client can be set to use

7 https://kernel.org/

Figure 3: High-level diagram of the CDMI Service Infrastructure

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 7 of 14

any of the configured links, which allows an operator to
balance the communication load across all available
links. Furthermore, since the LM uses the kernel’s
network stack, a system client (e.g. FES) can
automatically failover from a link that lost signal to a
different link.

3.1.3 File Exchange Service

The File Exchange Service (FES) allows an arbitrary
number of payloads to asynchronously transfer files by
mirroring them bidirectionally between flight and
ground, similar to MPCC’s Dropbox [6]. A user of a
payload places the data they wish to transfer into a
specific directory via the Flight or Ground Data Storage
service, which the FES periodically scans. When the FES
sees new files, it adds them to a queue of files to be
transferred. When a transfer slot becomes free for a
payload, the FES takes files from this queue and begins
transferring them. As part of the configuration, a payload
has a maximum number of current transfers defined. It
can also have file prioritization enabled, which means the
user of a given payload can place files in a high-priority
directory; these files will begin transferring before any
non-high-priority files of the payload.

Internally, FES uses the CCSDS File Delivery
Protocol (CFDP) [15] for data transfer. There are four
main parts to the FES: the file store, the FES server, the
CFDP daemon, and the FES transport. The file store
abstracts operations on a part of the payloads’ storage
filesystems, via primitives specified by CFDP [15], and
is made available to users through the Flight Data and
Ground Data Distribution services. The FES server
connects the file store with the CFDP daemon, and
reports telemetry (e.g., number of transfers, the latest
complete transfer, file checksums). The FES transport
handles sending data over the space-to-ground links: it is
configured for both the Ka and Ku links on Columbus,
with bandwidth limits set for each. It uses all configured
links in parallel: it receives AOS/LOS status from the
Link Manager and sends CFDP Protocol Data Units
(PDUs) on whichever link is available, through the IP
Communications Service. Finally, the CFDP daemon sits
between the FES server and transport, managing file
transfers as CFDP transactions. A file is added for
transfer by sending a message to the daemon. The
daemon then transfers the file in the form of CFDP PDUs
via the FES transport, retransmitting parts of a file when
necessary, and calculates and verifies a checksum over
the file. As such, it enables reliable, correct, and complete
file delivery.

3.1.4 Storage Services

CDMI provides storage space to its users on the
ground and in flight, with different emphases in their
implementation. The Ground Data Storage Service is
designed to facilitate convenient and secure access to

flight-related data on the ground. To this end, a
Nextcloud instance is integrated with the FES and
connected to the redundant storage share at Col-CC.
Nextcloud users can conveniently manage data from their
home workstations and share data with collaborators
working with the same payload. CDMI’s Identity Service
ensures that user permissions are correctly applied to all
data stored on the ground.

The primary objective of the Flight Data Storage
Service is to ensure the integrity of stored data, providing
a secure repository for experimental data. The integrity
of the data is ensured through multiple layers of
protection, including a software-based RAID on the
individual cluster nodes and data replication across
multiple nodes within the cluster. Each PVE node hosts
a dedicated data storage LXC container, which provides
an SFTP share accessible by payloads connected to
CDMI. The data storage container mounts a RAID-Z2
ZFS volume for each configured payload, thereby
ensuring that the data is protected against the loss of two
drives of the hosting PVE node. For particularly sensitive
data, it is also possible to replicate the ZFS volume to
other cluster nodes in fixed intervals, safeguarding it
against the loss of an entire PVE node. The use of SFTP
gives payloads a straightforward path to transfer data to
the ZFS volume, where it is stored securely until it is
either processed on-board or transferred to ground. To
facilitate this transfer, each payload volume contains a
separate storage section with the FES directory structure
where files are picked up or moved to automatically by
the FES.

3.1.5 Monitoring Services

CDMI’s monitoring services consist of Zabbix for
self-monitoring and Yamcs for payload monitoring. The
core of the Zabbix setup is a server hosted in a VM on the
ground, complemented by a proxy running in an LXC
deployed in-flight. Yamcs is also hosted in a VM on the
ground and exchanges data with both Zabbix and the
Data Services Subsystem (DaSS), Col-CC’s monitoring
database.

The in-flight proxy aggregates metrics from all other
in-flight containers, the Proxmox cluster hosts, and the
on-board switches. For hardware, this includes critical
parameters such as temperature and voltage.
Additionally, the Zabbix proxy conducts routine
reachability assessments of payloads by performing
regular ping operations. Data collected by the proxy is
periodically transmitted to the server on ground, where it
is stored in a dedicated database.

On the ground, the Zabbix server monitors its
neighbouring VMs but also extends its monitoring
capabilities to custom parameters of various operational
services, including the IP Communications, File
Exchange, and Identity services. Thus, monitoring not
only provides valuable insights into the health and

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 8 of 14

integrity of the system, but also detailed information on
service utilization patterns, enabling informed decision-
making and resource management.

Data collected by the Zabbix infrastructure is made
accessible to operators via the Zabbix web GUI. The GUI
is customizable in several ways: user-based
customization, a native feature of Zabbix allowing
operators to create custom dashboards, and global
dynamic configuration, adapting selected parts of the
Zabbix GUI to CDMI’s latest configuration. For
example, whenever a payload is added to the system, the
Configuration Service adds a custom page for that
payload to the GUI, populating it with its respective
collected metrics.

By contrast, Yamcs aims to provide CDMI related
metrics to PIs. This is achieved by making relevant
Zabbix and DaSS parameters available using custom
Yamcs data links. It is ensured that a payload’s metrics
can only be accessed by their respective users.
Furthermore, payload monitoring data can be viewed on
custom displays as part of the Yamcs web UI or obtained
by PI external interfaces through Yamcs data streams.

Additionally, Yamcs is CDMI’s interface to the
DaSS, therefore retaining compatibility with existing
Col-CC ground monitoring tools. Yamcs retrieves a
subset of Zabbix items and publishes them to the DaSS,
to provide the required metrics to Col-CC. Vice versa,
data available in the DaSS can reach CDMI services
through Yamcs.

3.1.6 Log Management Service

The Log Management Service centralizes log files
from CDMI hosts in the ground storage and preserves the
files on the originating hosts for a configurable period.
This allows easy retrieval and analysis of log messages
by developers and operators on ground, while enabling
accountability and traceability. Log collection is
achieved using rsyslog8 servers on flight and ground with
all other CDMI hosts acting as their clients. Each client
forwards a copy of log messages to their nearest server,
i.e., flight services to the flight server, and analogously
for ground. Log files are rotated to new files based on file
size and/or time limits using the logrotate9 utility. Old
files are compressed and purged after a configurable
number of rotations.

The FES (see Section 3.1.3) transfers logs from flight
to ground, thus centralizing them in the ground storage.
Most log files are downlinked once they have been
rotated, while a selection of critical files is transferred in
real-time, with new log messages written to these files
being downlinked as they occur.

8 https://www.rsyslog.com/

3.1.7 Configuration Service
CDMI is orchestrated and maintained through a

comprehensive Ansible-based deployment and
operations system, providing improved consistency,
automation, and scalability. This Configuration Service
serves as the backbone of CDMI, ensuring that all
components are consistently deployed and managed
through a unified configuration management approach.
The system is driven by configuration files, meaning that
changes to the infrastructure or services are achieved by
making simple adjustments to these configurations,
reducing complexity and the risk of error.

The architecture consists of two Ansible controllers:
one operating on the ground within a VM and another in-
flight housed within a container. The ground-based
Ansible controller is tightly integrated with the
AnsibleForms web service, providing an intuitive
interface for operators to interact with the system. The in-
flight Ansible controller, while primarily triggered by its
ground counterpart, possesses the capability to
autonomously execute playbooks based on sent
configuration files, ensuring continued operation and
system management even in the event of LOS.

A key feature of the ground Ansible controller is its
ability to maintain an up-to-date local representation of
the system configuration. This local state is not only
critical for pre-populating forms on AnsibleForms for
operators, but also facilitates the detection of
discrepancies between the desired and actual state of the
system when compared to monitoring data observed in
Zabbix.

3.1.8 Security Architecture

The security architecture of CDMI follows a defence-
in-depth strategy. It is aligned with a risk management
process and incorporates derived security controls. The
security architecture is built on several key elements
designed to ensure comprehensive protection across all
systems:

(1) Network security is achieved through strict
network segmentation, consistent enforcement of
firewall policies in both the ground and flight segments
and the implementation of intrusion detection systems.
(2) Identity and access management is provided by role-
based access controls and centralized single sign-on
mechanisms utilizing state-of-the-art protocols. (3) Data
security is guaranteed by safeguarding data both in transit
and at rest, incorporating strict access control measures
and secure communication protocols for data exchange
within both flight and ground networks. (4) Endpoint
security is ensured through integrating robust anti-
malware defences.

The above-mentioned elements are supported by
CDMI’s CI/CD approach enabling fast patching and

9 https://github.com/logrotate/logrotate

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 9 of 14

update mechanisms. The infrastructure-as-code approach
allows the maintenance of an automated Software Bill of
Materials (SBOM). The SBOM enhances application and
supply chain security, by enabling automated scanning
for common vulnerabilities and exposures which is
integrated into our patching policies. Finally, Software
development security is automatically applied to both
compiled and interpreted code, utilizing language-
specific static application security testing and linters to
maintain software integrity.

3.2 CDMI’s User Interfaces

CDMI’s infrastructure is distributed across multiple
VMs and LXCs, yet it is accessible to users via a unified
web interface. This interface, composed of a landing page
and a reverse proxy, streamlines interactions with the
entire infrastructure (see Figure 4).

3.2.1 Monitoring and Control

 Operators control CDMI primarily through
configuration changes. These changes are triggered by
filling out the appropriate predefined form in
AnsibleForms, ensuring ease of use while minimizing the
risk of misconfiguration. For example, by filling out a
single form, operators can dynamically register and
unregister payloads from the system — a change that
Ansible propagates throughout the entire infrastructure,
including ground and flight machines. Operators can also
configure CDMI’s ground and flight firewalls, which
allows them to granularly control who can access which
parts of the system. In addition, CDMI’s resources, such
as storage and link bandwidth, can be dynamically
configured for each payload, allowing tailored resource
management based on individual requirements. For
example, it is thus possible to temporarily increase a

payload’s storage space or its downlink bandwidth in the
event of a resource-intensive experiment.

Monitoring through Zabbix further supports CDMI’s
resource management by providing an overview of
current resource usage and issuing alerts when pre-
defined limits are reached, ensuring efficient oversight.
Overall, the administration of individual machines is kept
to a minimum through CDMI’s Infrastructure-as-Code
approach, promoting consistency and reducing the need
for manual intervention.

3.2.2 Using CDMI’s services

PIs engage with CDMI through two discrete
interfaces. The first interface is the landing page, which
provides PIs access to Ground Storage via Nextcloud,
Payload Monitoring through Yamcs, and comprehensive
information on the overall status of CDMI.

Nextcloud enables PIs to share data with their
collaborators, although it mainly serves as a gateway for
data upload and download by providing access to the FES
storage area (see Section 3.1.3). In contrast, Yamcs
provides comprehensive information regarding the status
and health of their payload. Through this interface, PIs
can monitor essential data related to their payload,
including real-time health metrics and current
configuration within CDMI (e.g. bandwidth allocation,
pending file transfers, and storage quota usage).

Additionally, Yamcs notifies PIs of the availability of
the secondary interface, namely direct IP
communications via the IP Communications Service
(IPCS). Once an operator has granted access by enabling
the IPCS with a specified bandwidth, PIs are able to
establish a secure connection to their payload through a
VPN tunnel. From their payload, PIs may interact
directly with selected portions of the CDMI flight

Figure 4: Screenshot of the CDMI landing page

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 10 of 14

infrastructure, such as accessing the flight data storage
via SFTP.

3.3 CDMI’s DevSecOps Concept

Fast software release cycles are highly desirable for
CDMI, as it provides services to multiple independent
PIs. One driver for fast release cycles is the adoption of
new experiments or changes to existing ones, which
require changes in the underlying service infrastructure.
Another driver is the necessity for flexible adaptation of
CDMI to future changes of software technologies or
additional hardware becoming available on board.

Prerequisites for fast release cycles are lightweight
verification processes reducing the overhead traditionally
observed in the aerospace industry, as well as a suitable
automated toolchain.

Two main pillars of the toolchain in CDMI are GitLab
CI for building reliable CI/CD pipelines, and Ansible for
complete automation of service deployment and
configuration (see Section 2.1.1). Together with
automated infrastructure provisioning these tools allow
for quick and reproducible bootstrapping and deployment
of complete CDMI environments comprised of all
required flight nodes (CDMI-F) and ground nodes
(CDMI-G).

The CI/CD pipelines automatically produce new
CDMI versions by applying the following steps: (1) Code
quality checks and static code analysis (linting) on source
code and configuration templates; (2) Building of custom
software components; (3) Unit testing of source code and
configuration templates; (4) Deployment to a digital twin
by applying Terraform and Ansible configurations; (5)
Running integration and system tests on the digital twin.

Since this procedure takes a few hours only, it is used
to provide fresh up-to-date environments to developers
and testers every night, allowing for quick identification
of integration issues.

To a degree, the deployment in step 4 and the testing
in step 5 can be further shortened to do a reconfiguration
and shallow testing on an existing environment only,
making it also suitable for producing intermediate
versions during ongoing development.

3.3.1 Configuration is running the show

CDMI’s custom Ansible configuration files describe
its entire infrastructure in code form comprising all
services and their location within the system. Separate
configuration files describe different aspects of CDMI,
e.g. its VMs/LXCs, networks, service definitions, and
storage configurations. Configurations are based on
YAML schemas and may reference each other. This
allows a simple representation of basic configuration

parameters like hostnames, IP addresses, and ports, but
also enables the dynamic representation of emergent
parameters that require a combination of multiple pieces
of information.

Since configuration changes are rolled out via
Ansible only, any change to the host definitions, network
structure, or service configuration, will automatically be
reflected in dependent services including the monitoring
systems, thus significantly reducing maintenance effort.

3.3.2 Environment twins

Multiple environments can be set up sharing the same
basic configuration or at least the same structure,
allowing for instantiating digital or physical twins of the
operational environment.

Five environment classes are defined for CDMI. The
Isolated Software Development environments are digital
twins, i.e., isolated environments situated in ESA’s
private cloud infrastructure, used for development and
automated testing. The Software Development
environments combine development hardware located at
the European Astronaut Centre (EAC) with digital twins
of CDMI-G in the ESA cloud to produce (nearly)
identical physical twins of the operational CDMI-F
segment planned to run in the Columbus module. The
Software Test environment utilizes a CDMI-G segment
deployed in the Col-CC infrastructure with development
hardware at EAC resembling CDMI-F. A similar high-
fidelity hardware setup will act as the System Reference
Facility used for training and integrated testing. Finally,
there will be the Payload Reference Facility (PRF)
environment, which represents a digital twin of CDMI
that will be made available to payload developers. With
the PRF it is possible to test a payload’s integration into
CDMI through remote network access.

In the development phase, these environments are
used for demonstrating new features, enabling fast
feedback from Col-CC operators. In preparation of
delivery, manual and automatic validation and
verification can be dry run on a physical twin to produce
realistic test results, thus decreasing the number of
iterations necessary to make a testing campaign
successful.

4. CDMI Concept Verification

As CDMI is still under active development, there are
no operational results available at this stage. However,
preliminary tests have been conducted within the isolated
development environment and the test environment to
verify the feasibility of CDMI’s core concepts.

These environments were demonstrated to future
operators, showcasing a live user interface of CDMI. The
demonstration focussed on a critical procedure: the

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 11 of 14

addition of a payload to the infrastructure. This procedure
was selected because it historically required significant
effort and touches nearly every service within CDMI.

Triggered by a straightforward Ansible Form, a single
Ansible playbook successfully configured the entire
system to accommodate a new payload. Once configured,
the newly added payload was able to utilize a simulated
space-to-ground link, enabling remote login and file
transfer operations (see Figure 5).

Figure 5: Example screenshot of the AnsibleForms Web UI.
The IP-Comms for Payload Simulator 1 (pl-sim1) is configured.
AnsibleForms ensures that input is in the correct format.

Importantly, the file transfer process demonstrated
robust performance, even under adverse conditions. In
the simulation, one of the two utilized space-to-ground
channels was deliberately removed, yet the system
continued to perform the file transfer without interruption,
showcasing CDMI’s resilience in handling potential loss
of signal. Figure 6 shows the measured bits per second
sent by the FES through the space-to-ground link during
two file transfers.

Figure 6: Ka and Ku link usage of the FES during two file
transfers.

Starting at the two-minute mark, a first file was
transferred entirely through the simulated Ka link
without interruption. A second file was sent at the six-
minute mark, but the simulated Ka link was removed
during transfer. The FES autonomously changed to the
Ku link and finished the remaining transfer.

These results, while preliminary, confirm the
feasibility of CDMI’s approach and provide a solid
foundation for further development.

5. Discussion

This work presents CDMI, an advanced infrastructure
of virtualized environments that integrates a suite of
services distributed across both ground and flight
segments. The preliminary results indicate that CDMI
successfully combines an intuitive and user-friendly
interface with robust, reliable functionality.

CDMI retains the core capabilities of its predecessor,
MPCC, particularly in enabling PIs to remotely connect
to their payloads and efficiently downlink data.
Moreover, CDMI puts additional emphasis on reliability
through redundancy, extensibility through rapid software
release cycles, and maintainability through modular
service components.

A key feature of CDMI is its foundation on
hypervisor technology, which opens a range of
possibilities for future development. This design not only
enhances its current capabilities but also allows for the
seamless integration of new services and even custom
virtual machines tailored to the specific needs of PIs.
Moreover, implementing a DevSecOps approach within
CDMI further strengthens its extensibility, enabling rapid
development, testing, and deployment of future
extensions. This approach ensures that new features and
services can be added efficiently and reliably,
maintaining the system’s robustness while continuously
evolving to meet emerging requirements.

5.1 Improving Operations

The new CDMI user interface is expected to reduce
operator intervention and chance for human error in
comparison to the procedures currently in use. On the one
hand, the utilization of AnsibleForms offers a user-
friendly interface with input sanitization. Conversely, the
integration of Ansible as a single platform that interacts
with numerous services should diminish the necessity for
operator intervention.

Furthermore, CDMI’s open configuration concept
facilitates planning at an incremental level allowing
operators to easily implement short-term planning
changes without the need for extensive reconfiguration.
This, along with the straightforward patching process
facilitated by Git, should minimize planned downtime by
speeding up maintenance. With smaller downtime,
patches are expected to be applied more quickly as there
is less impact on ongoing science, thus simplifying

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 12 of 14

scheduling. The goal is to make rolling out patches,
particularly security-related ones, as fast and painless as
possible. For example, adding or removing a payload
from CDMI, a task which can require several
configuration changes to the existing system, will be
realizable through the execution of a single playbook.
The integration of new payloads into the configuration of
CDMI’s services is expected to occur seamlessly, with
no anticipated downtime.

As CDMI will feature a far greater number of hosts
compared to MPCC and has the scope to increase in
complexity, human error could become a bigger factor if
not mitigated by strong controls within the system. The
big advantage of Ansible for the CDMI operator is that it
provides a management platform for the execution of
playbooks. Rather than executing numerous commands
touching multiple hosts, the operator relies on Ansible to
appropriately configure the entire system and must only
review the job output and analyse changes in telemetry.
Although routine operator tasks can be automated
without Ansible through simple scripting, the Ansible
platform manages the execution of playbooks for the user
in several ways. Ansible populates the playbook template
for the user at execution time: the set of hosts to be
managed is tracked in Ansible’s dynamic host inventory,
particularly suitable in virtual and containerized
environments. Ansible also provides easily digestible
information to the operator about the outcome of each
task on each host. In cases where a routine task fails a
large part of the diagnostic analysis is already done for
the operator by Ansible. Additionally, AnsibleForms
offers the functionality to schedule playbook runs for
future execution, thus allowing operators to manage their
time more efficiently and reducing the concentration of
tasks during high-pressure periods. The traditional
monitoring and control system in use at Col-CC handles
commands atomically, so that even though automated
routines can be created, the routines are static and cannot
customize themselves to the running environment.

5.2 Improving Reliability

Operators and PIs alike will benefit from CDMI’s
enhanced reliability features at both the hardware and
service levels. For example, in terms of file downlink,
CDMI’s File Exchange Service provides improved data
integrity. It uses CFDP’s native checksum functionality,
where checksums are created and verified for each file
transfer. For payloads requiring the highest levels of data
integrity, MPCC relied on manual checks and user
intervention, which resulted in a high administrative
burden. Since checksum verification is now a part of the
transfer process, it can allow automated mitigation, such
as re-transferring a corrupted file.

With its three VPUs, CDMI implements redundancy
at multiple levels, improving the achievement of mission
objectives. The CDMI VPUs use different power

sources, minimizing the risk of a complete CDMI power
failure, which would not only affect payload
communications and payload data storage, but also
access to critical Columbus components such as the
Columbus LAN Switches or the on-board terminal of the
Columbus Ka-band service. In the event of a power
failure affecting one or two VPUs, most operations can
be resumed without crew intervention through standard
ground reconfigurations achieved through VPU hot
redundancy. These reconfigurations are largely
transparent to the payload users, ensuring uninterrupted
payload communications.

The Intel AMT allows a powered VPU to be booted
remotely, even if the operating system is not running, to
facilitate troubleshooting or power-down operations. The
different VPUs will have redundant connections not only
within the CDMI and the Columbus network, but also to
the NASA data interfaces, making CDMI robust against
failure or power loss of devices in its communication
chain, and improving the availability of equipment that
depends on CDMI. The CDMI software can
automatically adapt to losses within the VPU
configuration and transfer active services to other VPUs,
making CDMI a more reliable data management system.
With the improved redundancy and more robust
hardware and software design, crew interaction with
CDMI is expected to be reduced to a minimum of non-
nominal cases. The most likely case of crew intervention
will be to replace an SSD that has been damaged by
prolonged exposure to radiation. The use of ZFS RAID
software, and the spare parts supplied with CDMI, should
allow a seamless replacement procedure.

5.3 Improving Extensibility

One of the most compelling aspects of CDMI’s
architecture is its extensibility, largely enabled by the
underlying hypervisor technology. CDMI has been
provisioned with significantly more computing resources
than are currently required, providing ample capacity for
future expansion. This foresight allows CDMI to evolve
beyond its initial capabilities in two primary ways: by
adding more flight services and by enabling PIs to host
their own private VMs on the platform, effectively
transforming CDMI into a "cloud above the sky".

Future services that could be offered by CDMI are,
for example, dedicated compression services for images
or video data, reducing the need for extensive file
downlinks by optimizing data before transmission.
Another potential service could be a flight package
mirror, which would facilitate fast and secure software
updates for devices connected to CDMI.

Furthermore, the ability for PIs to deploy private VMs
within CDMI could have significant long-term
implications for payload development. By offloading
resource-intensive tasks to these virtualized
environments, future payloads may be designed with

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 13 of 14

fewer onboard computational resources, reducing both
complexity and cost. This capability not only enhances
the flexibility and utility of CDMI but also promotes a
more efficient use of resources in space missions.

6. Conclusion

CDMI demonstrates how modern principles and
paradigms from Earth-based server architecture can be
effectively applied to space infrastructure. By adhering to
the concept of using COTS software and hardware
whenever possible, CDMI reduces both development and
maintenance costs. The adoption of a DevSecOps
approach ensures fast release cycles, enabling the
incorporation of short-term feedback from its user base.
CDMI’s modernized operator interfaces can be
continuously extended to cater to future extensions of the
system. Especially as CDMI’s hypervisor-based setup
facilitates long-term extensibility, allowing the platform
to evolve and expand its capabilities over time.

As CDMI looks forward to its planned launch in
2025, it aims to positively influence the design of future
space systems. Further lessons learned from the
operational phase are anticipated, which will continue to
refine and enhance the framework.

Acknowledgements

This project was carried out jointly by ALTEC S.p.A.,
CGI Deutschland B.V. & Co. KG, Space Applications
Services NV/SA, and ESA. The authors would like to
thank Stephen Ennis and Han Wessels at ESA and
Mathieu Schmitt, Nicolae Mihalache, Massimiliano
Signori, Martin Ursik and the CDMI Hardware Team at
Space Applications Services for their support.

References

[1] H. Stenuit and M. Ricci, "ICE Cubes---
International Commercial Experiment Service
for Fast-Track, Simple and Affordable Access
to Space for Research---Status and Evolution,"
in Space Capacity Building in the XXI Century,
Springer International Publishing, 2020, pp.
95--107.

[2] M. Gisi, L. Pfeiffer, A. Stettner, R. Seurig,
M. Wahle, A. Honne, K. Kaspersen, K. Bakke,
J. Thielemann and A. Liverud, "ANITA2 Trace
Gas Analyser for the ISS-Flight Model
Finalisation, Ground Test Results, and ANITA-
X for future exploration missions," in 50th
International Conference on Environmental
Systems, Lisbon, 2021.

[3] J. Love, "Science in Space: Week of Sept.
8, 2023 – The Immune System in Space,"
National Aeronautics and Space
Administration, 11 09 2023. [Online].
Available: https://www.nasa.gov/

missions/station/iss-research/science-in-space-
week-of-sept-8-2023-the-immune-system-in-
space/. [Accessed 18 09 2024].

[4] The European Space Agency, "Muninn
Launch Kit," 2023. [Online]. Available:
https://esamultimedia.esa.int
/docs/HRE/Muninn_launchkit.pdf. [Accessed
18 09 2024].

[5] D. Honess and O. Quinlan, "Astro pi:
Running your code aboard the international
space station," Acta Astronautica, vol. 138, pp.
43-52, 2017.

[6] T. Müller, D. Burdulis and C. Corsten,
"MPCC and Ku-IPS, New Ways to Control the
Next Generation of Columbus Payloads-
Ground Segment Aspects," in International
Astronautical Congress (IAC), Adelaide, 2017.

[7] A. Schlerf, D. Sabath, G. Soellner and I.
Verzola, "Implementation of an additional
command system, pathing the way for new
tasks at Col-CC," in International
Astronautical Congress (IAC), Adelaide, 2017.

[8] G. Brunetti, G. Campiti, M. Tagliente and
C. Ciminelli, "COTS Devices for Space
Missions in LEO," IEEE Access, vol. 12, pp.
76478-76514, 2024.

[9] Hewlett Packard Enterprise, "HPE
Spaceborne Computer," Hewlett Packard
Enterprise, 30 1 2024. [Online]. Available:
https://www.hpe.com/us/en/compute/hpc/
supercomputing/spaceborne.html. [Accessed
19 9 2024].

[10] Space Applications Services, "About
Yamcs," Space Applications Services, 30
August 2024. [Online]. Available:
https://yamcs.org/about. [Accessed 30 August
2024].

[11] The European Space Agency, "Annex 1:
Additional technical Information on ISS
capabilities and background information,"
2011.

[12] The European Space Agency, "Data-relay
system connects astronauts direct to Europe,"
The European Space Agency, 17 01 2022.
[Online]. Available:
https://www.esa.int/Applications/
Connectivity_and_Secure_Communications/
Data-relay_system_connects_astronauts_direct
_to_Europe. [Accessed 02 09 2024].

[13] J. Corbet, "Foo over UDP," LWN.net, 1 10
2014. [Online]. Available:
https://lwn.net/Articles/614348/. [Accessed 06
09 2024].

75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

IAC-24,B3,7,2,x89114 Page 14 of 14

[14] P. N. Ayuso, R. M. Gasca and L. Lefevre,
"Communicating between the kernel and user-
space in Linux using Netlink sockets," John
Wiley & Sons, Ltd., 2010.

[15] The Consultative Committee for Space
Data Systems, "CCSDS File Delivery Protocol

(CFDP)," CCSDS Secretariat, National
Aeronautics and Space Administration,
Washington, DC, 2020.

